Enzymatic and chemoenzymatic synthesis and stereochemical assignment of cis-dihydrodiol derivatives of monosubstituted benzenes

Derek R. Boyd, ${ }^{*, a}$ Narain D. Sharma, ${ }^{a}$ Breige Byrne, ${ }^{a}$ Mark V. Hand, ${ }^{a}$
John F. Malone, ${ }^{a}$ Gary N. Sheldrake, ${ }^{a}$ John Blacker ${ }^{b}$ and Howard Dalton ${ }^{c}$
a School of Chemistry, The Queen's University of Belfast, Belfast, UK BT9 5AG
${ }^{b}$ Zeneca Fine Chemicals and Manufacturing Organisation Process Technology Department, PO Box A38, Huddersfield, Yorkshire, UK HD2 1FF
${ }^{c}$ Department of Biological Sciences, University of Warwick, Coventry, UK CV4 7AL

Toluene dioxygenase-catalysed oxidation of mono-substituted benzene substrates ($\mathrm{R}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{Me}$, $\mathrm{Et}, \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{C} \equiv \mathrm{CH}, \mathrm{CF}_{3}, \mathrm{CN}, \mathrm{OMe}, \mathrm{OEt}, \mathrm{SMe}$) in growing cultures of Pseudomonas putida UV4 yielded the corresponding cis-dihydrodiol metabolites. Palladium-catalysed cross-coupling of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclohexa-3,5-diene with a range of tributyltin compounds provided a chemoenzymatic route to a further series of cis-dihydrodiol derivatives of monosubstituted benzenes ($\mathrm{R}=\mathrm{D}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{Bu}^{n}, \mathrm{SEt}, \mathrm{SPr}{ }^{\mathrm{i}}, \mathrm{SBu}^{t}, \mathrm{SPh}, \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$). The enantiopurities and absolute configurations of the cis-dihydrodiols, obtained by both enzymatic and chemoenzymatic routes, were determined by several new methods including ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the bis-MTPA esters of the 4-phenyl-1,2,4-triazoline-3,5-dione cycloadducts, X-ray crystallography, circular dichroism spectroscopy and stereochemical correlation.

Introduction

Dioxygenase-catalysed oxidation of aromatic rings to yield cis-dihydrodiol derivatives is an important initial step in the bacterial biodegradation of arenes in the environment. ${ }^{1}$ The production of mutant strains of the bacterium Pseudomonas putida (e.g. 39- ${ }^{1}$ and $\mathrm{UV4}^{2}$) has allowed the cis-dihydrodiols to be isolated in sufficient quantities for use as chiral precursors in synthesis. ${ }^{3-8}$ As a prelude to a comprehensive study of the metabolism of monocyclic arenes in these laboratories, it was considered necessary to devise generally applicable methods for: (i) the determination of enantiomeric excess (\% ee) and absolute configuration and (ii) the chemoenzymatic synthesis of cis-dihydrodiols which are not readily available by direct arene biotransformation.
In the preliminary reports of this work ${ }^{9,10}$ we have shown that the $\%$ ee values and absolute configurations of cis-dihydrodiols may be determined using ${ }^{1} \mathrm{H}$ NMR spectroscopy, X-ray crystallographic and stereochemical correlation methods. The present comprehensive study demonstrates the general applicability of the enzyme-catalysed cis-dihydrodiol synthesis, ${ }^{9,10}$ and evaluates alternative approaches to their stereochemical assignment. The chemoenzymatic synthesis of cis-dihydrodiol derivatives of alkyl aryl sulfides which are difficult to obtain directly by the biotransformation route is one of the important aspects of this study.

Results and discussion

The synthesis of cis-dihydrodiol metabolites, using mutant strains of the bacterium P. putida UV4 (a source of toluene dioxygenase, TDO) and a range of substituted benzene substrates, has been reported. ${ }^{9}$ During the current programme cisdihydrodiols 1B-14B were isolated from the corresponding substituted benzene substrates $\mathbf{1 A} \mathbf{- 1 4 A}$ (Scheme 1). However, in some cases the yields of cis-dihydrodiols, obtained by this direct asymmetric dihydroxylation procedure, were extremely poor e.g. diols 9B and 14B $(\leqslant 10 \%)$. The variable yields of cis-dihydrodiols, obtained from the biotransformations, may be due to several factors including substrate volatility and solubility, sub-

Scheme 1
strate and bioproduct toxicity, and growth conditions e.g. cell density and biotransformation time; bioproduct stability may be an additional factor. In general, cis-dihydrodiol metabolites of substituted benzene substrates were found to dehydrate (aromatise) under strongly acidic or basic conditions and at elevated temperatures. Kinetic studies on a series of cisdihydrodiols, having strong electron withdrawing groups, e.g. diols 10B and 11B, have shown them to be more stable under weakly acidic conditions while those with electron donating groups, e.g. diols 5B, 6B, 12B-14B, readily aromatised. ${ }^{11}$
All attempts to form diastereoisomeric bis[2-methoxy-2(trifluoromethyl)phenylacetate] (bisMTPA) ester derivatives, directly from the cis-dihydrodiols 1B-14B, using a number of solvents over a wide range of temperatures, as an indirect measure of enantiopurity, resulted in aromatisation. In most cases this problem could be circumvented when the cis-dihydrodiol metabolite, isolated by PLC purification without recourse to crystallisation, was treated at ambient temperature with the dienophile 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) to yield stable cycloadducts. cis-Dihydrodiol metabolites (1B-7B, 9B, 10B) were found to give the corresponding PTAD cycloadducts
($\mathbf{1 C}-\mathbf{7 C}, \mathbf{9 C}, \mathbf{1 0 C}$) in good yields (Scheme 2). Diels-Alder cycloaddition of the monosubstituted benzene cis-dihydrodiols with PTAD could, in principle, yield syn- and anti-addition products relative to the hydroxy groups. ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude mixture containing the PTAD cycloadducts, however, showed essentially a single diastereoisomer ($>97 \%$) to be present. The bisMTPA esters (1D-7D, 9D, 10D), formed from the corresponding cycloadducts ($\mathbf{1 C - 7 C}, \mathbf{9 C}$, 10C), were isolated after ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis had shown that the reaction had gone to completion. The bisMTPA esters were then carefully purified ensuring that no separation of diastereoisomers should occur. In a few cases, the PTAD cycloadducts, e.g. 11C-14C, proved to be less stable and consequently the corresponding bisMTPA esters (11D-14D) were not isolated.
${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the cycloadduct bisMTPA esters (1D-7D, 9D, 10D) provided a good method for enantiopurity determination. The stereochemical relationship between a single $(1 S)$-enantiomer \dagger of the $c i s$-dihydrodiols \mathbf{B}, the $(8 S) \dagger$-PTAD cycloadducts \mathbf{C}, and the bis- $(R)-\mathrm{MTPA}(8 S, R)$ or bis-(S)-MTPA $(8 S, S) \dagger$ esters \mathbf{D} (formed using the acid chloride derivative of (R) - or (S)-MTPA respectively), is shown in Scheme 2. The two diastereoisomeric bisMTPA pairs $(8 S, R)$ and

1B-7B, 9B, 10B (1S) 1C-7C, 9C, 10C (8S) 1D $_{R}-7 D_{R}, 9 D_{R}, 10 D_{R}(8 S, R)$ $\mathbf{1 D}_{S}-7 \mathbf{D}_{S}, 9 \mathbf{D}_{S}$, 10D $_{S}(8 S, S)$

Scheme 2 Reagents: i PTAD, ii (R)-MTPA-Cl or (S)-MTPA-Cl
$(8 R, R)$ derived from the corresponding ($1 S$) and ($1 R$) enantiomers of cis-dihydrodiol 1B were shown to be distinguishable by both ${ }^{1} \mathrm{H}$ NMR (-OMe) and ${ }^{19} \mathrm{~F}$ NMR $\left(-\mathrm{CF}_{3}\right)$ spectroscopic analysis. The enantiopurity of the cis-dihydrodiol 1B was found to vary from $c a .60-72 \%$ ee among different samples. Fractional recrystallization from chloroform-hexane did however provide a single enantiomer ($[a]_{\mathrm{D}}-39, \mathrm{CHCl}_{3} ; \geqslant 98 \%$ ee). The application of cis-diol 1B in natural product synthesis, e.g. enantiopure conduritol $\mathrm{C},{ }^{4}$ thus requires that the initially isolated metabolite be multiply recrystallized and checked for $\%$ ee prior to use.

The cis-dihydrodiols 2B-7B, 9B and 10B, were converted to the corresponding bis- (R)-MTPA ester derivatives $\mathbf{2 D}_{R}-\mathbf{7 D}_{R}$, $\mathbf{9 D}_{R}$ and $\mathbf{1 0 D} D_{R}(8 S, R) .{ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectroscopic analyses appeared to indicate that only a single diastereoisomer, in each case, was present and thus diols 2B-7B, 9B and 10B were assumed to be enantiopure. This conclusion was confirmed when single diastereoisomers of the bis-(S)-MTPA ester derivatives $\mathbf{2 D}_{S}-\mathbf{7} \mathbf{D}_{S}, \mathbf{9 D}_{S}$ and $\mathbf{1 0 D}_{S}(8 S, S)$ again were formed
\dagger The configuration at $\mathrm{C}-9(\mathbf{C}$ and $\mathbf{D})$ and $\mathrm{C}-2(\mathbf{B})$ are unspecified due to Sequence Rule priority changes associated with different R substituents.
and were clearly distinguishable from those obtained using (R) MTPA. The latter ($8 S, S$) diastereoisomers have an enantiomeric relationship with, and are thus spectrally indistinguishable from, the $(8 R, R)$ diastereoisomers which would have been formed using (R)-MTPA and the undetected ($1 R$) enantiomers of cis-diols 2B-10B. The $\%$ ee values for most of the cisdihydrodiols e.g. 1B-7B, 9B and 10B have also recently been confirmed by direct chiral stationary phase HPLC analysis (CSP HPLC), ${ }^{12}$ and by indirect formation of the boronate derivatives obtained using (+)- and (-)-2-(1-methoxyethyl)benzeneboronic acid (MBBA) followed by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{13}$ The CSP HPLC and boronate methods of enantiopurity determination of cis-dihydrodiols have the advantage of convenience and of smaller samples being required. However, while the CSP HPLC approach is very useful for a number of cis-dihydrodiols of monosubstituted benzenes, that are available in either enantiomeric form by enzymatic and/or chemoenzymatic methods, ${ }^{14,15}$ (e.g. 1B-5B), it is difficult to judge the applicability of this method when only one enantiomer is available. The MBBA method, which was found to be particularly useful in the determination of enantiopurity of cis-diol metabolites from polycyclic arenes, ${ }^{16}$ proved to be of less value for monocyclic cis-diols due to poor resolution of diastereotopic ${ }^{1} \mathrm{H}$ NMR signals. The indirect bisMTPA method, described above, has the advantages of well resolved diastereotopic ${ }^{1} \mathrm{H}$ NMR signals and crystallinity of the products, facilitating X-ray crystallographic analysis. In view of the particular advantages in each case, all three methods have been used for the determination of enantiopurity of cis-diol metabolites.

The formation of both enantiomers of cis-dihydrodiol 1B, during biotransformation, is consistent with a lower degree of facial selectivity during oxidation and may be steric in origin. A fluorine atom ($\mathrm{r}_{\mathrm{v}}=147 \mathrm{pm}$) is almost isosteric to a hydrogen atom ($r_{v}=120 \mathrm{pm}$) and this may result in a greater degree of flexibility in binding of the substrate $\mathbf{1 A}$ within the active site of the enzyme compared with larger substrates e.g. 2A-10A and 14A. All other reported cis-dihydrodiol metabolites of monosubstituted arenes except compound 1B were enantiopure. ${ }^{8}$

The absolute configurations of the cis-dihydrodiol metabolites 2B, 5B and 6B, consistently found to be of ($1 S$)-configuration, have been assigned using circular dichroism methods. ${ }^{17,18}$ The absolute configurations of the enantiomers of $c i s$-diols $\mathbf{1 B}$ 10B, were found to be identical although the stereodescriptors changed from $(2 R)$ to $(2 S)$ according to the substituent priority in accordance with the Sequence Rules. In order to avoid ambiguity the absolute configurations of compounds $\mathbf{1 B} \mathbf{- 1 0 B}$ thus refer only to $\mathrm{C}-1$ where the stereodescriptor remains constant for all $\mathrm{C}-3$ substituents.

X-Ray crystallographic analysis was carried out on compounds $\mathbf{1 D}_{R}, \mathbf{5 D}_{S}$ and $\mathbf{1 0 D}_{S}$ derived from the corresponding enantiopure cis-dihydrodiol metabolites 1B, 5B and 10B and the appropriate (R for $\mathbf{1 D}_{R}$) or (S for $\mathbf{5 D}_{S}, \mathbf{1 0 D}_{S}$) form of MTPA. \ddagger The structures of the parent diols 1B, 5B and 10B, the cis-configuration between the hydroxy groups, and the absolute configuration in each case, was confirmed by crystal structure analysis of the bisMTPA esters $\mathbf{1 D}_{R}, \mathbf{5 D}_{S}$ and $\mathbf{1 0 D}_{S}$. Compounds $\mathbf{5 D}_{s}$ and $\mathbf{1 0 D}_{s}$ are isostructural and all three compounds show a similarity in the preferred conformation of the triazoline dione cycloadduct portion (Fig. 1-3). In each phenyltriazoline dione group the phenyl ring is twisted with respect to the triazoline ring. Torsions between the rings are

[^0]

Fig. 1 A projection of molecule $\mathbf{1 D}_{R}$

Fig. 2 A projection of molecule $\mathbf{5 D}_{S}$

Fig. 3 A projection of molecule $\mathbf{1 0 D}_{S}$
$+37.7^{\circ}\left(\mathbf{1 D}_{R}\right),-49.1^{\circ}\left(\mathbf{5 D}_{S}\right),-55.5^{\circ}\left(\mathbf{1 0 D}_{S}\right)$. The structures also confirm that reaction between the cis-dihydrodiols 1B-10B and PTAD occurred by syn-cycloaddition to the sterically more hindered face i.e. the face having the cis-hydroxy groups uppermost. The projections also show that the ring junction nitrogen atoms are pyramidal rather than planar in the solid state, with the nitrogen lone pairs cis to the OMTPA groups. The dihedral angles between the planes $\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 6-\mathrm{C} 7$ and the triazoline planes are $46.5^{\circ}\left(\mathbf{1 D}_{R}\right), 34.5^{\circ}\left(\mathbf{5 D}_{S}\right)$ and $35.5^{\circ}\left(\mathbf{1 0 D}_{S}\right)$. The absolute configuration at the chiral centre $\mathrm{C}-8\left(\mathbf{1 D}_{R}, \mathbf{5 D}_{S}\right.$, $\mathbf{1 0 D}_{S}$) was directly correlated with the known configurations of
the MTPA groups, and thus allowed the $(1 S)$ configuration of the corresponding centre $(\mathrm{C}-1)$ to be unequivocally established in the parent cis-dihydrodiols (1B, 5B, 10B).

The absolute configurations of cis-dihydrodiols 1B, 5B and 10B, having been rigorously established as $(1 S)$ by X-ray crystallography, were used to devise an empirical method for absolute configuration determination based upon diagnostic features in the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of the bisMTPA esters
(1D-7D, 9D, 10D). Thus for cis-dihydrodiols having a (1S)configuration (i) the more downfield $\mathrm{MeO}{ }^{1} \mathrm{H}$ signal will have a larger δ value for esters obtained using (R)-MTPA ($\delta 3.65-3.59$) compared with (S)-MTPA ($\delta 3.55-3.21$); (ii) an aromatic signal (2 H , doublet) was found downfield ($\delta 7.56-7.68$) from the main aromatic signals only when (S)-MTPA was used; (iii) the more downfield CF_{3} signal in the ${ }^{19} \mathrm{~F}$ spectrum showed a smaller negative δ_{F} value (-7.49 to -8.39 ppm) using (R)-MTPA and larger negative δ_{F} value (-8.68 to -9.29 ppm) using (S)MTPA. The formation of bisMTPA derivatives of the PTAD cycloadducts has also proved applicable for the determination of both enantiopurity and absolute configuration of a wide range of cis-dihydrodiol derivatives of disubstituted benzene substrates. ${ }^{14}$ The chiral boronate derivatives of the parent cisdiol and the corresponding PTAD adducts have also been used to provide an empirical method ${ }^{13}$ for absolute configuration determination and complements the bisMTPA method.

Although cis-dihydrodiol metabolites 1B-14B were obtained by TDO-catalysed oxidation of the corresponding arenes, $\mathbf{1 A}-14 A$, the isolated yields in some cases $e . g$. diols $9 B$ and $\mathbf{1 4 B}$ were very low. Furthermore some of the PTAD-cycloadducts were unstable e.g. diols $\mathbf{8 B}, \mathbf{1 1 B}-14 B$ and alternative methods for the determination of enantiopurity and absolute configuration were required.

In an earlier communication from these laboratories, ${ }^{\mathbf{1 0}}$ it has been shown that the iodine atom in cis-diol 4B, or bromine atom in cis-diol 3B, can be replaced in a single-step reaction using organotin reagents. This method provides entry into a wider range of cis-dihydrodiols as chiral precursors and also a stereochemical correlation approach to the absolute configuration determination. The present study includes a much wider range of tributyltin reagents than reported earlier ${ }^{10}$ using cis-dihydrodiols 3B and 4B.

Replacement of the iodine atom in cis-dihydrodiol 4B with a hydrogen atom by treatment with tributyltin hydride gave the achiral cis-dihydrodiol of benzene (benzene cis-glycol). Utilisation of tributyltin deuteride in toluene solvent provided a single enantiomer of 3-deuteriobenzene-cis-dihydrodiol (158, 25% yield, $[a]_{\mathrm{D}}-9$). Palladium-catalysed cross-coupling has been reported between vinyl halides and organotin reagents ${ }^{18,19}$ and it has been observed that activated groups e.g. allyl, alkenyl, alkynyl are transferred more readily than simple alkyl groups. One advantage of the palladium-catalysed cross-coupling of cis-dihydrodiols, containing a vinylic halide group with tributyltin reagents, is the ability to effect direct substitution without recourse to protection-deprotection procedures for the diol moiety.

Using palladium(II) acetate and triphenylphosphine as catalyst at relatively low temperatures $\left(25-40^{\circ} \mathrm{C}\right)$, cis-dihydrodiols 8B, 9B and 17B were isolated ($11-35 \%$ yield). With tetrakis(triphenylphosphine)palladium(0) as catalyst at higher temperatures $\left(35-90^{\circ} \mathrm{C}\right)$ the cis-dihydrodiols $11 \mathrm{~B}, \mathbf{1 6 B}, \mathbf{1 8 B}$ 22B were obtained (31-75\%). The cis-dihydrodiol derivative of bromobenzene 3B, on similar palladium-catalysed coupling reactions with tributyltin reagents yielded compounds $\mathbf{8 B} \mathbf{(2 3 \%}$ yield) and $\mathbf{1 4 B}(14 \%)$. Due to the instability of many of the cisdihydrodiol products and the necessity to carry out chromatographic purification to remove organotin residues, the isolated yields of the cis-dihydrodiols were variable (11-75\%).

Despite the modest yields recorded in some cases, the ability to substitute an iodine atom in compound $\mathbf{4 B}$ provides a direct route to a series of enantiopure cis-dihydrodiol derivatives of
alkyl aryl (14B, 18B-20B) and diaryl sulfides (21B, 22B) of known absolute configuration that are generally unavailable via toluene dioxygenase-catalysed oxidation since sulfoxidation occurs preferentially. ${ }^{20}$

Substitution of the iodine atom in compound 4B by vinyl (8B), ethynyl (9B), allyl (16B) and cyano (11B) groups occurred in the expected manner using the appropriate palladium catalyst and tributyltin reagent. Surprisingly, when tributyltin methoxide was used the iodine atom in compound $\mathbf{4 B}$ was replaced by an n-butyl group rather than by a methoxy group yielding cis-dihydrodiol 17B. While the transfer of an alkyl group from a trialkyltin reagent during palladium catalysed coupling reactions is normally a very slow reaction, the presence of an alkoxide group (OMe, OEt) appeared to weaken the tin-carbon bond thus facilitating transfer of a n-butyl group.

The palladium-catalysed cross coupling reaction between the (1S) enantiomer of cis-dihydrodiol 4B and the appropriate tributyltin reagent yielded the $(1 S)$ enantiomer of cis-dihydrodiols 8B, 9B, 14B, 17B-22B. Thus, although the bisMTPA cycloadducts of diols $\mathbf{8 B}, \mathbf{1 1 B}$, and 13B could not be obtained, confirmation of their \% ee values and absolute configurations was provided by the stereochemical correlation.
cis-Dihydrodiols 12B and 13B remained as the only cisdihydrodiols, from the total series 1B-22B, whose enantiopurities and absolute configurations could not be determined by the bisMTPA ester method or by stereochemical correlation based on the palladium-catalysed cross-coupling of compound 4B with tributyltin reagents.
The absolute configuration of cis-dihydrodiol 12B had been independently assigned as ($1 S$) by reaction with diiron nonacarbonyl to give the corresponding tricarbonyl iron η^{4} cyclohexadiene iron (0) complex and correlation with the CD spectra of the corresponding complexes of cis-dihydrodiols 2B and 5B. ${ }^{21}$ The close similarity in the CD spectra of the series of cis-dihydrodiols containing both an alkoxy group (12B, 13B) and a thioalkyl group (14B, 18B-22B), obtained during the present study, provided further confirmation of a $(1 S)$ configuration in each case.
During the course of the biotransformation studies of some alkyl aryl and diaryl sulfides, ${ }^{20}$ sulfoxides were found to be the major or only identified metabolites. Occasionally these sulfoxides were found to be accompanied, in very low yields, by cis-dihydrodiols derived from the corresponding sulfides and sulfoxides. cis-Diol sulfoxides of sulfides 14A, 19A and 21A were thus detected as minor metabolites. Chemical oxidation of the relatively unstable thioether cis-dihydrodiols 14B, 18B-22B has been found to give the corresponding diol sulfoxides and diol sulfones in good yields. These diol sulfoxides and sulfones appear to be among the most stable cis-dihydrodiol derivatives of substituted benzenes. ${ }^{11}$ The results of the enzymatic and non-enzymatic sulfur oxidation studies on cis-dihydrodiols will be reported elsewhere.
The concept of direct replacement of an iodine atom by a hydrogen (or a deuterium atom e.g. $\mathbf{4 B} \longrightarrow \mathbf{1 5 B}$) in the cisdihydrodiol series discussed herein, has also recently been applied to the synthesis of cis-dihydrodiols of both enantiomers and regioisomers of either absolute configuration. ${ }^{14,15}$ A full discussion of this approach to the chemoenzymatic synthesis of unnatural stereo- and regio-isomers of cis-dihydrodiols will be reported in subsequent papers.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz and 500 MHz using General Electric QE300 and GN Ω-500 instruments. Tetramethylsilane was used as an internal reference and CDCl_{3} as solvent, unless stated otherwise. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 470.49 MHz in CDCl_{3} using the GN Ω - 500 instrument and α, α, α-trifluorotoluene as internal reference. Coupling constants, J, are given in Hz . Mass spectra were run at 70 eV on
an AEI-MS902 instrument updated by VG Autospec and accurate molecular weights were determined by the peakmatching method ($\pm 6 \times 10^{-6}$ a.m.u.).

Optical rotations $[a]_{\mathrm{D}}$ were measured on a Perkin-Elmer polarimeter (Model 241), in the specified solvent and concentration, at 589 nm and ambient temperature. Electronic circular dichroism (CD) spectra were recorded using a JASCO J-720 instrument in acetonitrile solvent.

Tributyltin deuteride, vinyltributyltin, ethynyltributyltin, allyltributyltin, tributyltin methoxide and tributyltin cyanide were available from commercial sources. Methyl, ethyl, isopropyl, tert-butyl and p-tolyl tributyltin sulfides were obtained by reaction of the corresponding thiol with tributyltin chloride according to the literature procedures. cis-Diol 1B was supplied by Zeneca FCMOPT.

Isolation and characterisation of cis-dihydrodiol § metabolites 1B-14B

The cis-dihydrodiol metabolites 1B-14B were obtained using P. putida UV4 under the biotransformation conditions reported. ${ }^{22,23}$
cis-(1S,2S)-1,2-Dihydroxy-3-fluorocyclohexa-3,5-diene 1B. Mp 69-71 ${ }^{\circ} \mathrm{C}$ (From dichloromethane-hexane); $[a]_{\mathrm{D}}-39$ (c 0.7, $\mathrm{CHCl}_{3}, \geqslant 98 \%$ ee $) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 4.27\left(1 \mathrm{H}, \mathrm{dd}, J_{2,1} 6.6, J_{2, \mathrm{~F}} 6.6\right.$, $2-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.60\left(1 \mathrm{H}, \mathrm{dd}, J_{4, \mathrm{~F}} 11.0, J_{4,5} 6.1,4-\mathrm{H}\right)$, $5.70\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1} 3.1, J_{6,5} 9.6,6-\mathrm{H}\right), 5.86(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.
cis-($1 S, 2 S$)-1,2-Dihydroxy-3-chlorocyclohexa-3,5-diene 2B. (ca. 80%), mp $81-83^{\circ} \mathrm{C}$ (from ethyl acetate-hexane (lit., ${ }^{24} 82-$ $\left.84^{\circ} \mathrm{C}\right) ;[a]_{\mathrm{D}}+36\left(c 0.7, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 4.22\left(1 \mathrm{H}, \mathrm{d}, J_{2,1}\right.$ $6.4,2-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 6.4, J_{1,6} 1.7,1-\mathrm{H}\right), 5.92(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$, $6-\mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.
cis-(1S,2S)-1,2-Dihydroxy-3-bromocyclohexa-3,5-diene 3B. (ca. $85 \%), \mathrm{mp} 91-94{ }^{\circ} \mathrm{C}$ (from ethyl acetate); $[a]_{\mathrm{D}}+20(c 0.6$, MeOH) (Found: C, 38.1; H, 3.6. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{BrO}_{2}$ requires C, 37.7; H, $3.7 \%)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 4.29\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.4,2-\mathrm{H}\right), 4.49(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.97\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1} 3.5, J_{6,5} 9.4,6 \mathrm{H}\right), 6.38$ ($1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.7,4-\mathrm{H}$).
cis-(1S,2S)-1,2-Dihydroxy-3-iodocyclohexa-3,5-diene 4B. (ca. 80%), mp $64-81{ }^{\circ} \mathrm{C}$ (decomp.) (from ethyl acetate); $[a]_{\mathrm{D}}+41$ (c 0.5 MeOH) (Found: C, 30.5; H, 3.0. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{IO}_{2}$ requires C, $30.25 ; \mathrm{H}, 2.9 \%)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 4.28\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.1,2-\mathrm{H}\right), 4.43$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.03\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1} 4.2, J_{6,5} 9.4\right.$, $6-\mathrm{H}), 6.69\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.5,4-\mathrm{H}\right)$.
cis-(1S,2R)-1,2-Dihydroxy-3-methylcyclohexa-3,5-diene 5B. (ca. 60%), $\mathrm{mp} 56-58^{\circ} \mathrm{C}$ (from ethyl acetate-hexane (lit., ${ }^{25}$ $\left.59^{\circ} \mathrm{C}\right) ;[a]_{\mathrm{D}}+26(c 1.76, \mathrm{MeOH})\left(\right.$ lit. $\left.{ }^{25}[a]_{\mathrm{D}}+25\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$, $1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.03\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.0,2-\mathrm{H}\right), 4.29(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $5.72\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 4.7,4-\mathrm{H}\right), 5.79\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1} 3.4, J_{6,5} 9.5,6-\mathrm{H}\right)$, $5.91(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.
cis-(1S,2R)-1,2-Dihydroxy-3-ethylcyclohexa-3,5-diene 6B. (ca. 60%), mp $37-38{ }^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{26} 38^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}+40$ (c 1.3, MeOH); (lit., $\left.{ }^{26}[a]_{\mathrm{D}}+42, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.09$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.29\left(2 \mathrm{H}, \mathrm{q}, J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}} 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.00$ $\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 5.9,2-\mathrm{H}\right), 4.31(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.73(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H})$, $5.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.
cis-(1S,2R)-1,2-Dihydroxy-3-acetoxymethylcyclohexa-3,5-
diene 7B. (ca. 20%), mp $67-69^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}$ $+59\left(c 1.1, \mathrm{CHCl}_{3}\right),[a]_{\mathrm{D}}+102(c 0.92, \mathrm{MeOH})$ (Found: C, 58.5 ; $\mathrm{H}, 6.2 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 58.7 ; \mathrm{H}, 6.5 \%\right)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 2.10$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O} A c$), $4.19\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.3,2-\mathrm{H}\right), 4.35(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $4.69\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 13.5, C H_{A} \mathrm{H}_{B} \mathrm{OAc}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 13.4\right.$, $\mathrm{CH}_{A} \mathrm{H}_{B} \mathrm{OAc}$), $5.97(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H})$.
cis-(1S,2R)-1,2-Dihydroxy-3-vinylcyclohexa-3,5-diene 8B. (ca. 30%), mp $54-55^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-diethyl ether) (lit., ${ }^{27} 57-58^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}$ $+115(c 0.5, \mathrm{MeOH})$ (Found: $\mathrm{M}^{+} 138.06884 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $138.06807) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.69\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 2} 7.9, \mathrm{OH}\right), 2.62(1 \mathrm{H}$, d, $\left.J_{\text {ОН, } 1} 9.5, \mathrm{OH}\right), 4.37\left(1 \mathrm{H}, \mathrm{dd}, J_{2, \text { OH }} 7.9, J_{2,1} 5.4,2-\mathrm{H}\right), 4.46$
§ Throughout the Experimental section, cis refers to the cis arrangement of the hydroxy groups in the compounds made.
$(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.22\left(1 \mathrm{H}, \mathrm{d}, J_{\text {cis }} 10.8, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.53\left(1 \mathrm{H}, \mathrm{d}, J_{\text {trans }}\right.$ $\left.17.6, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.86\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 8.7,4-\mathrm{H}\right), 5.99(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-$ H), $6.41\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {cis }} 10.8, J_{\text {trans }} 17.5, \mathrm{C} H=\mathrm{CH}_{2}\right)$.
cis-(1S,2R)-1,2-Dihydroxy-3-ethynylcyclohexa-3,5-diene 9B. (ca. 10%), mp $51-52^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[a]_{\mathrm{D}}+194$ (c $0.4, \mathrm{MeOH}$) (Found: $\mathrm{M}^{+} 136.05245 . \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ requires $136.05166)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 2.34(1 \mathrm{H}, \mathrm{br}$ s, OH$), 2.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 3.27(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-\mathrm{H}), 4.23\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 5.6,2-\mathrm{H}\right), 4.36(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 6.06(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.
cis-(1S,2R)-1,2-Dihydroxy-3-trifluoromethylcyclohexa-3,5-
diene 10B. (ca. 65%), $\mathrm{mp} 87-89^{\circ} \mathrm{C}$ (from dichloromethanehexane) (lit., ${ }^{28} 90-92{ }^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}-63$ (c $0.9, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}), 4.30\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.0,2-\mathrm{H}\right), 4.52(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.07(2 \mathrm{H}$, m, $5-\mathrm{H}, 6-\mathrm{H}), 6.58$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$).
cis-(1S,2R)-1,2-Dihydroxy-3-cyanocyclohexa-3,5-diene 11B. (ca. $56 \%), \mathrm{mp} 78-80^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;[a]_{\mathrm{D}}+187(c 0.6, \mathrm{MeOH})$ (Found: $\mathrm{M}^{+} 137.099$ 32. $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$ requires 137.047 67); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{4}\right] \mathrm{MeOH}\right), 4.20\left(1 \mathrm{H}, \mathrm{dd}, J_{2,6} 0.6, J_{2,1} 6.6,2-\mathrm{H}\right), 4.29$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.80(1 \mathrm{H}$, dd, $\left.J_{4,5} 6.1, J_{4,6} 0.8,4-\mathrm{H}\right)$.
cis-(1S,2S)-1,2-Dihydroxy-3-methoxycyclohexa-3,5-diene
12B. (ca. 10%), unstable oil, $[a]_{\mathrm{D}}+44\left(c 0.9, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+} 142.06291 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}$ requires 142.06299$) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$, $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.22\left(1 \mathrm{H}, \mathrm{d}, J_{2.1} 5.9,2-\mathrm{H}\right), 4.36(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $5.00\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 6.1,4-\mathrm{H}\right), 5.61\left(1-\mathrm{H}, \mathrm{dd}, J_{6,1} 4.1, J_{6,5} 9.5,6-\mathrm{H}\right)$, $5.92(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.
cis-(1S,2S)-1,2-Dihydroxy-3-ethoxycyclohexa-3,5-diene 13B. (ca. 10\%), unstable oil, $[a]_{\mathrm{D}}+51$ (c 2.0, CHCl_{3}) (Found: M^{+} $156.07851 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$ requires 156.07864$) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.35$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.81\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.12$ $\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.0,2-\mathrm{H}\right), 4.39(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 6.1\right.$, $4-\mathrm{H}), 5.53\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1} 3.5, J_{6,5} 9.6,6-\mathrm{H}\right), 5.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.
cis-(1S,2S)-1,2-Dihydroxy-3-methylsulfanylcyclohexa-3,5-
diene 14B. $(c a .1 \%), \operatorname{mp} 57-61{ }^{\circ} \mathrm{C},[a]_{\mathrm{D}}+37(c 0.7, \mathrm{MeOH})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.60\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 2} 8.2, \mathrm{OH}\right)$, $2.99\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 1} 8.5, \mathrm{OH}\right), 4.12\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 5.7,2-\mathrm{H}\right), 4.21(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 5.44\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.7,4-\mathrm{H}\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1} 4.0, J_{6,5}\right.$ $9.4,6-\mathrm{H}), 5.94\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 9.5, J_{5,4} 5.7,5-\mathrm{H}\right)$.

Formation of cycloadducts between cis-dihydrodiols and

 4-phenyl-1,2,4-triazoline-3,5-dioneGeneral procedure. A solution of freshly sublimed 4-phenyl-1,2,4-triazoline-3,5-dione (2 mmol) in dichloromethane (10 cm^{3}) was added dropwise with stirring to the cis-dihydrodiol $(2.1 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ at room temperature until the reaction was complete i.e. the pink colour of the reagent persisted (ca. 1 h). Removal of the solvent under reduced pressure yielded the cycloadduct which was purified by PLC or flash chromatography ($75-95 \%$ ethyl acetate-hexane).
cis-(1S,8S,9S)-8,9-Dihydroxy-1-fluoro-4-phenyl-2,4,6-tri-
azatricyclo[5.2.2.0,6] undec-10-ene-3,5-dione 1C. Yield 73\%; mp $231-233{ }^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}-24$ (c 0.7 in pyridine, after recrystallization to 100% ee) (Found: C, $54.9 ;$ H, $4.0 ; \mathrm{N}, 13.3$. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{4}$ requires C, 55.1; H, 4.0; N, 13.8\%); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left[{ }^{2} \mathrm{H}_{5}\right.$]pyridine), $4.32(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.43\left(1 \mathrm{H}, \mathrm{dd}, J_{9, \mathrm{~F}} 6.4, J_{9,8} 8.5\right.$, $9-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.52(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{m}$, $10-\mathrm{H}$), 7.24-7.67 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).
cis-(1S,8S,9S)-8,9-Dihydroxy-1-chloro-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$] undec-10-ene-3,5-dione 2C. Yield 50%; mp $216-218{ }^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}-22(c 1.1$ in pyridine) (Found: $\mathrm{C}, 52.1 ; \mathrm{H}, 3.8 ; \mathrm{N}, 12.6 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires C, $52.3 ; \mathrm{H}, 3.8$; $\mathrm{N}, 13.1 \%) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 3.96\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.3,9-\mathrm{H}\right), 4.07(1 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.56(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 11-\mathrm{H}), 7.29-$ $7.49(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.
cis-($1 S, 8 S, 9 S$)-8,9-Dihydroxy-1-bromo-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$] undec-10-ene-3,5-dione 3C. Yield 95%; mp $184-186^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}-5$ ($c 0.8$ in acetone) (Found: C, 46.1; $\mathrm{H}, 3.6 ; \mathrm{N}, 11.4 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires C, 45.9; $\mathrm{H}, 3.3 ; \mathrm{N}$, $11.5 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$ acetone $2.83(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH})$, $4.08\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.4,9-\mathrm{H}\right), 4.13\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.4, J_{8,9} 8.4,8-\mathrm{H}\right)$,
$4.94(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.63\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.6,11-\mathrm{H}\right), 6.70$ ($1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.6, J_{10,11} 8.6,10-\mathrm{H}$), 7.39-7.52 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). cis-($1 S, 8 S, 9 S$)-8,9-Dihydroxy-1-iodo-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$] undec-10-ene-3,5-dione 4C. Yield 93%; mp $186-194^{\circ} \mathrm{C}$ (decomp.) (from MeOH$) ;[a]_{\mathrm{D}}-6(c 0.7$ in acetone) (Found: C, $40.7 ; \mathrm{H}, 2.9 ; \mathrm{N}, 10.2 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{IN}_{3} \mathrm{O}_{4}$ requires C, 40.7; $\mathrm{H}, 2.9 ; \mathrm{N}, 10.2 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$ acetone $), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7}\right.$ 2.6, $\left.J_{8,7} 8.4,8-\mathrm{H}\right), 4.11\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.4,9-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $6.49\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.2, J_{11,10} 8.5,11-\mathrm{H}\right), 6.92\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.3\right.$, $\left.J_{10,11} 8.5,10-\mathrm{H}\right), 7.36-7.52$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).
cis-($1 R, 8 S, 9 R$)-8,9-Dihydroxy-1-methyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$] undec-10-ene-3,5-dione 5C. Yield 76%; mp $180-183{ }^{\circ} \mathrm{C}$ (decomp.) (from MeOH); $[a]_{\mathrm{D}}+10(c 0.8$ in pyridine) (Found: C, 59.7; H, 5.1; N, 13.9. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $59.8 ; \mathrm{H}, 5.0 ; \mathrm{N}, 13.9 \%)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$), 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.58 $\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.3,9-\mathrm{H}\right), 3.94\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.7, J_{8,9} 8.3,8-\mathrm{H}\right), 4.96$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.28\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.4, J_{10,11} 8.2,10-\mathrm{H}\right), 6.46(1 \mathrm{H}$, dd, $\left.J_{11,7} 6.0, J_{11,10} 8.2,11-\mathrm{H}\right), 7.28-7.48$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).
cis-($1 R, 8 S, 9 R$)-8,9-Dihydroxy-1-ethyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione 6C. Yield 63%; mp $187-189^{\circ} \mathrm{C}$ (from CHCl_{3}-diethyl ether); $[a]_{\mathrm{D}}-29$ (c 0.5, CHCl_{3}) (Found: C, 60.4; H, 5.6; N, 13.1. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $60.9 ; \mathrm{H}, 5.4 ; \mathrm{N}, 13.3 \%) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.15(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.64$ $\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.3,9-\mathrm{H}\right), 3.82\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.3,8-\mathrm{H}\right), 4.89$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.29\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 0.8, J_{10,11} 8.3,10-\mathrm{H}\right), 6.46(1 \mathrm{H}$, dd, $\left.J_{11,7} 6.3, J_{11,10} 8.3,11-\mathrm{H}\right), 7.33-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.
cis-(1R,8S,9R)-8,9-Dihydroxy-1-acetoxymethyl-4-phenyl-2,4,6-triazatricyclo 5 .2.2.0 ${ }^{2,6}$] undec-10-ene-3,5-dione 7C. Yield 43%; oil, $[a]_{\mathrm{D}}-6$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{M}^{+} 359.11126$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 359.11172); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$), $2.11(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{O} A c\right), 3.79\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.4,9-\mathrm{H}\right), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.1, J_{8,9}\right.$ $8.4,8-\mathrm{H}), 4.89\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 11.9, \mathrm{CH}_{2} \mathrm{OAc}\right), 4.97(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $5.08\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 11.9, \mathrm{CH}_{2} \mathrm{OAc}\right), 6.41\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 0.8, J_{10,11} 8.2\right.$, $10-\mathrm{H}), 6.50\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.4, J_{11,10} 8.2,11-\mathrm{H}\right), 7.33-7.44(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H})$.
cis-(1R,8S,9R)-8,9-Dihydroxy-1-ethynyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$] undec-10-ene-3,5-dione 9C. Yield 63%; mp $200-202{ }^{\circ} \mathrm{C}$ (from MeOH); $[0]_{\mathrm{D}}+57$ (c 1.2 in acetone) (Found: $\mathrm{M}^{+} 311.09130 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 311.09057); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone $), 3.24(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-\mathrm{H}), 3.97\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.4,9-\mathrm{H}\right)$, $4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{8.7} 2.5, J_{8,9} 8.4,8-\mathrm{H}\right), 4.91(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.48(1 \mathrm{H}$, d, $\left.J_{10,11} 8.3,10-\mathrm{H}\right), 6.65\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.0, J_{11,10} 8.3,11-\mathrm{H}\right), 7.36-$ $7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.

cis-($1 R, 8 S, 9 R$)-8,9-Dihydroxy-1-trifluoromethyl-4-phenyl-

 2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione 10C. Yield $65 \% ; \mathrm{mp} 210-215^{\circ} \mathrm{C}$ (decomp.) (from MeOH); $[a]_{\mathrm{D}}+12$ (c 0.8 in pyridine) (Found: C, 50.6; H, 3.4, N, 11.8. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $50.7 ; \mathrm{H}, 3.4 ; \mathrm{N}, 11.8 \%)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 4.03(1 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 4.19\left(1 \mathrm{H}, \mathrm{dd}, J_{9,7} 6.4, J_{9.8} 8.4,9-\mathrm{H}\right), 5.09(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $6.55\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.4, J_{10,11} 8.3,10-\mathrm{H}\right), 6.65\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9\right.$, $\left.J_{11,10} 8.3,11-\mathrm{H}\right), 7.24-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.
Preparation of bis-(R)-(+)- and bis-(S)-(-)-MTPA esters of

 cycloadducts derived from monosubstituted arene cis-dihydrodiolsGeneral procedure. To a solution of the PTAD cycloadduct $(0.1 \mathrm{mmol})$ in anhydrous pyridine $\left(2 \mathrm{~cm}^{3}\right)$ was added $(S)-(+)$ - or (R)-(-)-2-methoxy-2-phenyl-2-trifluoromethylacetyl chloride $(0.22 \mathrm{mmol})$ and 4 -dimethylaminopyridine $(5 \mathrm{mg})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ until ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis indicated that esterification had gone to completion (48 h). Purification by PLC (2% methanol-chloroform) afforded the respective $(R)-(+)$ or (S)-(-)-bisMTPA esters in good yield ($>90 \%$). The diastereoisomeric composition of the bisMTPA esters (${ }^{1} \mathrm{H}$ NMR spectroscopy), e.g. 1D, provided an indirect measure of the $\%$ ee of the corresponding cis-dihydrodiols, e.g. 1 B.
($1 S, 8 S, 9 R)$-8,9-Bis[(R)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-fluoro-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{1 D}_{R} . \mathrm{Mp} 177-178^{\circ} \mathrm{C}$ (from acetone-diethyl
ether); $[a]_{\mathrm{D}}+10\left(c 1.1, \mathrm{CHCl}_{3}\right)$ (Found: C, $55.35 ; \mathrm{H}, 3.55 ; \mathrm{N}$, 5.9. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{7} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $\left.55.4 ; \mathrm{H}, 3.55 ; \mathrm{N}, 5.7 \%\right) ; \delta_{\mathrm{H}}(500$ MHz), 3.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.36 ($3 \mathrm{H}, \mathrm{s}$, 7-H, $8-\mathrm{H}, 9-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 6.76(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 7.34-7.47$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})-8.39\left(\mathrm{CF}_{3}\right),-10.07\left(\mathrm{CF}_{3}\right)$.
($1 S, 8 S, 9 R$)-8,9-Bis[(S)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-fluoro-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{1 D}_{s}$. Mp 201-203 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-\mathrm{CHCl}_{3}$); $[a]_{\mathrm{D}}+23\left(c 0.5, \mathrm{CHCl}_{3}\right)$ (Found: C, 55.2; H, 3.6; N, 5.6 $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{7} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $\left.55.4 ; \mathrm{H}, 3.55 ; \mathrm{N}, 5.7 \%\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}), 3.19(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.20(2 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}$, $9-\mathrm{H}), 5.58\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 5.3, J_{8,9} 9.0,8-\mathrm{H}\right), 6.58(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H})$, $6.80(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 7.31-7.48(13 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\mathrm{H}), 7.56(2 \mathrm{H}, \mathrm{d}$, $J 7.3, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})-9.27\left(\mathrm{CF}_{3}\right),-9.35\left(\mathrm{CF}_{3}\right)$.

Although this bisMTPA ester was initially obtained as a diastereomeric mixture (ratio ca. 4:1) of $\mathbf{1 D}_{R}(8 S, R: 8 R, R$ using R-MTPA) or $\mathbf{1 D}_{S}(8 S, S: 8 R, S$ using S-MTPA), the above physical data relates to the major diastereoisomer only which was obtained exclusively after recrystallisation.

X-Ray crystal structure analysis of compound $\mathbf{1 D}_{R}$

Crystal data. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{7} \mathrm{~N}_{3} \mathrm{O}_{8} . \quad M=737.6$. Orthorhombic, $a=11.927(9), b=15.096(9), c=18.284(14) \AA, V=3292(4) \AA^{3}$, $\lambda=0.71073 \AA$, space group $P 2_{1} 2_{1} 2_{1}\left(\right.$ No. 19) , $Z=4, D_{\mathrm{x}}=1.488 \mathrm{~g}$ cm^{-1}, colourless blocks, dimensions $0.56 \times 0.46 \times 0.25 \mathrm{~mm}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.32 \mathrm{~cm}^{-1}, F(000)=1512$.

Data collection and processing. Siemens P3 diffractometer, θ 2θ scan, θ scan width $1.2^{\circ}, 3.5<2 \theta<50^{\circ}, h: 0 \rightarrow 14, k: 0 \rightarrow 17, l$: $0 \rightarrow 21$; graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation; 3269 unique reflections measured giving 2278 with $F>4 \sigma(F)$; Lorentz and polarisation corrections applied.
Structure analysis and refinement. Direct methods (SHELXS86) ${ }^{29}$ full-matrix least squares refinement on F^{2} (SHELXL$93)^{30}$ with all non-hydrogen atoms anisotropic and hydrogens in calculated positions using the riding model with $U_{\text {iso }}(\mathrm{H})=1.2$ $U(\mathrm{eq})$ for the attached atom. (The calculated positions for methyl hydrogens were confirmed as corresponding to those located in an earlier difference Fourier map). Final $R_{1}=0.046$ (for 2278 data), $w R_{2}=0.123$ (all data), Goodness of Fit $=0.98$, residual electron density: $-0.24 \rightarrow 0.20$. A projection of the molecule is shown in Fig. 1.
($1 S, 8 S, 9 S$)-8,9-Bis[(R)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-chloro-4-phenyl-2,4,6-triazatricyclo[$\left.5.2 .2 .0^{2,6}\right]$ undec-10-ene-3,5-dione 2D ${ }_{R} . \mathrm{Mp} 95-98^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}+2$ (c $0.5, \mathrm{CHCl}_{3}$) (Found: $\mathrm{M}^{+} 753.132$ 17. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6}{ }^{35} \mathrm{ClN}_{3} \mathrm{O}_{8}$ requires 753.13124$)$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $3.24(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.63$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.09\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8,9-\mathrm{H}\right), 5.33(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $5.37\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}\right), 6.58\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.2, J_{11,10}\right.$ $8.8,11-\mathrm{H}), 6.64\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.5, J_{10,11} 8.8,10-\mathrm{H}\right), 7.34-7.49$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})-8.05\left(\mathrm{CF}_{3}\right),-9.85\left(\mathrm{CF}_{3}\right)$.
($1 S, 8 S, 9 S)$-8,9-Bis[(S)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-chloro-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione 2D ${ }_{S}$. Mp 198-200 ${ }^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}+36$ (c 1.1, CHCl_{3}) (Found: C, 53.5; H, 3.5; N, 5.7. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{ClN}_{3} \mathrm{O}_{8}$ requires C, $54.1 ; \mathrm{H}, 3.5 ; \mathrm{N}, 5.6 \%) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 3.22(3 \mathrm{H}, \mathrm{s}$, OMe), 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.19 (1 H , dd, $J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}$), $5.31(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.36\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8,9-\mathrm{H}\right), 6.59\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7}\right.$ $\left.5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 6.69$ ($1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.1, J_{10,11} 8.4,10-\mathrm{H}$), $7.33-7.48(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.61(2 \mathrm{H}, \mathrm{d}, J 7.3, \operatorname{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470$ $\mathrm{MHz})-9.09\left(\mathrm{CF}_{3}\right),-9.85\left(\mathrm{CF}_{3}\right)$.
$(1 S, 8 S, 9 S)-8,9-\operatorname{Bis}[(R)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-bromo-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{3 D}_{R} . \mathrm{Mp} \quad 189-190^{\circ} \mathrm{C}$ (from chloroformdiethyl ether); $[a]_{\mathrm{D}}-15\left(c 0.5, \mathrm{CHCl}_{3}\right)$ (Found: C, 51.0; H, 3.1; $\mathrm{N}, 5.5 . \mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{BrN}_{3} \mathrm{O}_{8}$ requires C, 51.1; H, 3.3; N, 5.3%); $\delta_{\mathrm{H}}(500 \mathrm{MHz}), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.11(1 \mathrm{H}$, d, $\left.J_{9,8} 8.7,9-\mathrm{H}\right), 5.33(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.35\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.5, J_{8,9}\right.$ $8.7,8-\mathrm{H}), 6.52\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 6.74(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{10,7} 1.2, J_{10,11} 8.4,10-\mathrm{H}\right), 7.35-7.52(15 \mathrm{H}, \mathrm{m}, ~ A r-H) ; \delta_{\mathrm{F}}(470$ $\mathrm{MHz})-7.75\left(\mathrm{CF}_{3}\right),-9.47\left(\mathrm{CF}_{3}\right)$.
($1 S, 8 S, 9 S$)-8,9-Bis[(R)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-bromo-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{3 D}_{s} . \mathrm{Mp} 191-192{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-diethyl ether); $[a]_{\mathrm{D}}+48\left(c 0.8, \mathrm{CHCl}_{3}\right)$ (Found: C, $51.1 ; \mathrm{H}, 3.2 ; \mathrm{N}, 5.1$. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{BrN}_{3} \mathrm{O}_{8}$ requires C, $\left.51.1 ; \mathrm{H}, 3.3 ; \mathrm{N}, 5.3 \%\right) ; \delta_{\mathrm{H}}(500$ MHz), $3.23(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.18\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7}\right.$ $\left.2.2, J_{8,9} 8.7,8-\mathrm{H}\right), 5.34(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.37\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.7,9-\mathrm{H}\right)$, $6.53\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 6.80\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.2\right.$, $\left.J_{10,11} 8.4,10-\mathrm{H}\right), 7.32-7.48(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.63(2 \mathrm{H}, \mathrm{d}, J 7.4$, $\mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})-8.79\left(\mathrm{CF}_{3}\right),-9.48\left(\mathrm{CF}_{3}\right)$.
($1 S, 8 S, 9 S)-8,9-\operatorname{Bis}[(R)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-iodo-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 $0^{2,6}$]undec-10-ene-3,5-dione $4 \mathbf{D}_{R}$. $\mathrm{Mp} 200-220{ }^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CHCl}_{3}-$ diethyl ether); $[a]_{\mathrm{D}}+18$ (c 0.7, CHCl_{3}) (Found: C, 47.6; H, 3.0; $\mathrm{N}, 4.7 . \mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{IN}_{3} \mathrm{O}_{8}$ requires C, 48.3; H, 3.1; N, 5.0\%); $\delta_{\mathrm{H}}(500$ MHz), $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.07\left(1 \mathrm{H}, \mathrm{d}, J_{9,8}\right.$ $8.7,9-\mathrm{H}), 5.30\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.5, J_{8,9} 8.7,8-\mathrm{H}\right), 5.34(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $6.37\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.2\right.$, $\left.J_{10,11} 8.4,10-\mathrm{H}\right), 7.34-7.56(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})-7.56$ $\left(\mathrm{CF}_{3}\right),-9.15\left(\mathrm{CF}_{3}\right)$.
($1 S, 8 S, 9 S$)-8,9-Bis[(S)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-iodo-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{4 D}_{s} . \mathrm{Mp} 150-151^{\circ} \mathrm{C}$ (from CHCl_{3}-diethyl ether); $[a]_{\mathrm{D}}+59\left(c 0.6, \mathrm{CHCl}_{3}\right)$ (Found: C, 48.2; H, 3.2; N, 4.9 . $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{IN}_{3} \mathrm{O}_{8}$ requires $\left.\mathrm{C}, 48.3 ; \mathrm{H}, 3.1 ; \mathrm{N}, 5.0 \%\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}), 3.25(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.14\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7}\right.$ $\left.2.5, J_{8,9} 8.7,8-\mathrm{H}\right), 5.33\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.7,9-\mathrm{H}\right), 5.38(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $6.38\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.2, J_{11,10} 8.4,11-\mathrm{H}\right), 6.97\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.2\right.$, $\left.J_{10,11} 8.4,10-\mathrm{H}\right), 7.30-7.48(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.65(2 \mathrm{H}, \mathrm{d}, J 7.8$, $\mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-8.66\left(\mathrm{CF}_{3}\right),-9.16\left(\mathrm{CF}_{3}\right)$.
$(1 R, 8 S, 9 R)-8,9-B i s[(R)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-methyl-4-phenyl-2,4,6-triazatricyclo[5.2.2. $\left.0^{2,6}\right]$ undec-10-ene-3,5-dione $\mathbf{5 D}_{R}$. $\mathrm{Mp} 171-173{ }^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}-20$ (c 0.5, CHCl_{3}) (Found: C, 57.0; H, 3.9; N, 5.7. $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $57.3 ; \mathrm{H}, 4.0 ; \mathrm{N}, 5.7 \%) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 1.50(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.63\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8\right.$, $9-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.37\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}\right)$, $6.34\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.5, J_{10,11} 8.1,10-\mathrm{H}\right), 6.55\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.6\right.$, $\left.J_{11,10} 8.1,11-\mathrm{H}\right), 7.32-7.47(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})$, $-7.86\left(\mathrm{CF}_{3}\right),-9.57\left(\mathrm{CF}_{3}\right)$.
($1 R, 8 S, 9 R)$-8,9-Bis[(S)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-methyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{5 D}_{s}$. Mp 203-204 ${ }^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}+23$ (c 0.5, CHCl_{3}) (Found: C, 57.4; H, 4.0; N, 6.0. $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $57.3 ; \mathrm{H}, 4.0 ; \mathrm{N}, 5.7 \%) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 1.92(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.21(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.89\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8,9-\mathrm{H}\right), 5.18(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}\right), 5.38(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{10,7} 1.1, J_{10,11} 8.1,11-\mathrm{H}\right), 6.57\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 6.2, J_{11,10} 8.1,11-\right.$ H), 7.25-7.48 (13H, m, Ar-H), 7.65 ($2 \mathrm{H}, \mathrm{d}, ~ J 7.3, \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{F}}(470 \mathrm{MHz}),-9.00\left(\mathrm{CF}_{3}\right),-11.01\left(\mathrm{CF}_{3}\right)$.

X-Ray crystal structure analysis of compound $5 \mathrm{D}_{S}$

Crystal data. $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} . \quad M=733.6$. Orthorhombic, $a=11.593(16), b=15.664(24), c=18.655(19) \AA, \quad V=3387(8)$ $\AA^{3}, \lambda=0.71073 \AA$, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $Z=4, D_{\mathrm{x}}=$ $1.438 \mathrm{~g} \mathrm{~cm}^{-1}$, colourless blocks, dimensions $0.84 \times 0.38 \times 0.36$ $\mathrm{mm}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.24 \mathrm{~cm}^{-1}, F(000)=1512$.
Data collection and processing. Siemens P3 diffractometer, $\theta-2 \theta$ scan, θ scan width $1.2^{\circ}, 5<2 \theta<50^{\circ}, h: 0 \rightarrow 13, k$: $0 \rightarrow 18, l: 0 \rightarrow 22$; graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation; 3352 unique reflections measured giving 2301 with $F>4 \sigma(F)$; Lorentz and polarisation corrections applied.

Structure analysis and refinement. Direct methods (SHELXS86): ${ }^{29}$ full-matrix least squares refinement on F^{2} (SHELXL$93)^{30}$ with all non-hydrogen atoms anisotropic and hydrogens in calculated positions using the riding model with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2$ $\mathrm{U}(\mathrm{eq})$ for the attached atom. (The calculated positions for methyl hydrogens were confirmed as corresponding to those located in an earlier difference Fourier map). Final $R_{1}=0.065$ (for 2301 data), $w R_{2}=0.176$ (all data), Goodness of Fit $=0.99$,
residual electron density: $-0.35 \rightarrow 0.26$. A projection of the molecule is shown in Fig. 2.
($1 R, 8 S, 9 R)-8,9-\operatorname{Bis}[(R)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-ethyl-4-phenyl-2,4,6-triazatricyclo [5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{6 D}_{R}$. $\mathrm{Mp} 158-160^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}-29$ (c 0.7, CHCl_{3}) (Found: C, 57.7; H, 4.3; N, 5.7. $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $57.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 5.6 \%) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 0.69(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.44(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.22(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.91(1 \mathrm{H}, \mathrm{d}$, $\left.J_{9,8} 8.8,9-\mathrm{H}\right), 5.33(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 8-\mathrm{H}), 6.42\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.1\right.$, $\left.J_{10,11} 8.1,10-\mathrm{H}\right), 6.60\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.7, J_{11,10} 8.1,11-\mathrm{H}\right), 7.33-$ $7.52(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-7.74\left(\mathrm{CF}_{3}\right),-9.43\left(\mathrm{CF}_{3}\right)$.
$(1 R, 8 S, 9 R)-8,9-\operatorname{Bis}[(S)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-ethyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione 6D ${ }_{S}$. $\mathrm{Mp} 131-134^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}+29$ (c 0.6, CHCl_{3}) (Found: C, 58.0; H, 4.3; N, 5.7. $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $57.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 5.6 \%) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 0.96(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.21(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.10(1 \mathrm{H}, \mathrm{d}$, $\left.J_{9,8} 8.8,9-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}\right), 5.41(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}), 6.49\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.1, J_{10,11} 8.4,10-\mathrm{H}\right), 6.62\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7}\right.$ $\left.5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 7.24-7.47(13 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\mathrm{H}), 7.68(2 \mathrm{H}, \mathrm{d}$, $J 7.3, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-9.28\left(\mathrm{CF}_{3}\right),-9.38\left(\mathrm{CF}_{3}\right)$.
($1 R, 8 S, 9 R$)-8,9-Bis[(R)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-acetoxymethyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{7 D}_{R} . \mathrm{Mp} 197-198{ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}) ;[a]_{\mathrm{D}}+18\left(c 0.6, \mathrm{CHCl}_{3}\right)$ (Found: C, 55.6; H, 4.0; N, 5.5. $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{10}$ requires C, $\left.56.1 ; \mathrm{H}, 3.95 ; \mathrm{N}, 5.3 \%\right) ; \delta_{\mathrm{H}}(500$ MHz), $2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OAc}\right), 3.11(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.65(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.83\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 11.7, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8\right.$, $9-\mathrm{H}), 5.24\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 11.7, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.35(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.39$ ($1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}$), $6.49\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.5, J_{10,11} 8.4\right.$, $10-\mathrm{H}), 6.60\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 7.30-7.47(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-7.79\left(\mathrm{CF}_{3}\right),-9.66\left(\mathrm{CF}_{3}\right)$.
($1 R, 8 S, 9 R$)-8,9-Bis[(S)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-acetoxymethyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-ene-3,5-dione $\mathbf{7 D}_{s} . \mathrm{Mp} 183-185^{\circ} \mathrm{C}$ (from $\left.\mathrm{MeOH}-\mathrm{CHCl}_{3}\right) ;[a]_{\mathrm{D}}+52\left(c 0.6, \mathrm{CHCl}_{3}\right)$ (Found: C, $56.0 ; \mathrm{H}$, 4.0; N, 5.5. $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{10}$ requires C, $56.0 ; \mathrm{H}, 3.95$; $\mathrm{N}, 5.3 \%$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OAc}\right), 3.19(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.22$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.44\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 12.1, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.23(2 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}, 9-\mathrm{H}), 5.36\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 12.1, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.44(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $6.58(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 11-\mathrm{H}), 7.26-7.48(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.66(2 \mathrm{H}$, d, $J 7.3, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-8.33\left(\mathrm{CF}_{3}\right),-11.19\left(\mathrm{CF}_{3}\right)$.
$(1 R, 8 S, 9 R)-8,9-B i s[(R)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-ethynyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]-undec-10-ene-3,5-dione $\mathbf{9 D}_{R}$. $\mathrm{Mp} 89-91{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-diethyl ether); $[a]_{\mathrm{D}}+23\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+} 743.16916$. $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires 743.170 23); $\delta_{\mathrm{H}}(500 \mathrm{MHz}), 2.13(3 \mathrm{H}, \mathrm{s}$, $\equiv \mathrm{CH}), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.04\left(1 \mathrm{H}, \mathrm{d}, J_{9,8}\right.$ $8.9,9-\mathrm{H}), 5.35(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 8-\mathrm{H}), 6.58(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 11-\mathrm{H})$, $7.34-7.53(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}) ;-7.79\left(\mathrm{CF}_{3}\right),-9.51$ $\left(\mathrm{CF}_{3}\right)$.
($1 R, 8 S, 9 R$)-8,9-Bis[(S)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-ethynyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{2,6}$]-undec-10-ene-3,5-dione $\mathbf{9 D}_{s} . \mathrm{Mp} 164-165^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-$ diethyl ether; $[a]_{\mathrm{D}}+67\left(c 0.8, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+} 743.16916$. $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires 743.170 23); $\delta_{\mathrm{H}}(500 \mathrm{MHz}), 2.74(1 \mathrm{H}, \mathrm{s}$, \equiv CH), $3.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.17\left(1 \mathrm{H}, \mathrm{d}, J_{8,7}\right.$ $\left.2.8, J_{8,9}, 8-\mathrm{H}\right), 5.27(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.43\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.9,9-\mathrm{H}\right), 6.61$ ($2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 11-\mathrm{H}$), $7.32-7.50(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.62(2 \mathrm{H}, \mathrm{d}$, $J 7.8, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-8.97\left(\mathrm{CF}_{3}\right),-9.14\left(\mathrm{CF}_{3}\right)$.
($1 R, 8 S, 9 R$)-8,9-Bis[(R)-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-trifluoromethyl-4-phenyl-2,4,6-triazatricyclo[5.2.2.0 ${ }^{\mathbf{2}, 6}$]undec-10-ene-3,5-dione $\mathbf{1 0 D}_{R}$. $\mathrm{Mp} 157-158^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}) ;[a]_{\mathrm{D}}-11\left(c 0.5, \mathrm{CHCl}_{3}\right)$ (Found: C, 53.2; H, 3.4; N, 5.5 . $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $53.4 ; \mathrm{H}, 3.3 ; \mathrm{N}, 5.3 \%$); $\delta_{\mathrm{H}}(500 \mathrm{MHz})$, $3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.21\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8,9-\mathrm{H}\right)$, $5.39\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}\right), 5.43(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.60(1 \mathrm{H}$, d, $\left.J_{10,11} 8.4,10-\mathrm{H}\right), 6.71\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.8,11-\mathrm{H}\right), 7.38-$
$7.44(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz}),-4.47\left(1-\mathrm{CF}_{3}\right) ;-7.66$ (MTPA-CF ${ }_{3}$), $9.92\left(\mathrm{MTPA}-\mathrm{CF}_{3}\right)$.
$(1 R, 8 S, 9 R)-8,9-B i s[(S)$-2-methoxy-2-phenyl-2-trifluoro-acetoxy]-1-trifluoromethyl-4-phenyl-2,4,6-triazatricyclo-
[5.2.2.0 2, $]$ undec-10-ene-3,5-dione $\mathbf{1 0 D}_{S}$. Mp 203-209 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}) ;[a]_{\mathrm{D}}+16\left(c 1.1, \mathrm{CHCl}_{3}\right)$ (Found: C, 53.2; H, 3.4; N, 5.5. $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $\left.53.4 ; \mathrm{H}, 3.3 ; \mathrm{N}, 5.3 \%\right)$; $\delta_{\mathrm{H}}(500 \mathrm{MHz})$, $3.23(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 5.22\left(1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.6, J_{8,9} 8.8,8-\mathrm{H}\right), 5.35$ $\left(1 \mathrm{H}, \mathrm{d}, J_{9,8} 8.8,9-\mathrm{H}\right), 5.51(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.68\left(1 \mathrm{H}, \mathrm{dd}, J_{10,7} 1.1\right.$, $\left.J_{10,11} 8.4,10-\mathrm{H}\right), 6.74\left(1 \mathrm{H}, \mathrm{dd}, J_{11,7} 5.9, J_{11,10} 8.4,11-\mathrm{H}\right), 7.28-$ $7.49(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.61(2 \mathrm{H}, \mathrm{d}, J 7.7, \operatorname{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}(470 \mathrm{MHz})$, $-4.37\left(1-\mathrm{CF}_{3}\right),-8.72\left(\mathrm{MTPA}-\mathrm{CF}_{3}\right),-11.01\left(\mathrm{MTPA}-\mathrm{CF}_{3}\right)$.

X-Ray crystal structure analysis of compound $\mathbf{1 0 D}_{S}$

Crystal data. $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{8} . \quad M=787.6$ Orthorhombic, $a=$ 11.588(5), $b=15.721(5), c=18.926(6) \AA, V=3448(2) \AA^{3}, \lambda=$ $0.71073 \AA$, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $Z=4, D_{\mathrm{x}}=1.517 \mathrm{~g}$ cm^{-1}, colourless blocks, dimensions $1.00 \times 0.57 \times 0.50 \mathrm{~mm}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.39 \mathrm{~cm}^{-1}, F(000)=1608$.

Data collection and processing. Siemens P3 diffractometer, $\theta-2 \theta$ scan, θ scan width $1.2^{\circ}, 3.3<2 \theta<50^{\circ}, h: 0 \rightarrow 13, k: 0 \rightarrow 18$, $l: 0 \rightarrow 22$; graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation; 3424 unique reflections measured giving 2621 with $F>4 \sigma(F)$; Lorentz and polarisation corrections applied.
Structure analysis and refinement. Direct methods (SHELXS86); ${ }^{29}$ full-matrix least squares refinement on F^{2} (SHELXL$93)^{30}$ with all non-hydrogen atoms anisotropic and hydrogens in calculated positions using the riding model with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2$ $\mathrm{U}(\mathrm{eq})$ for the attached atom. (The calculated positions for methyl hydrogens were confirmed as corresponding to those located in an earlier difference Fourier map). Final $R_{1}=0.040$ (for 2621 data), $w R_{2}=0.129$ (all data), Goodness of Fit $=0.76$, residual electron density: $-0.19 \rightarrow 0.18$. A projection of the molecule is shown in Fig. 3.

Substitution reactions of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodo-

 cyclohexa-3,5-diene 4B using tributyltin reagentscis-(1S,2R)-1,2-Dihydroxy-3-deuteriocyclohexa-3,5-diene
15B. To a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclo-hexa-3,5-diene $4 \mathrm{~B}(0.9 \mathrm{~g}, 3.75 \mathrm{mmol})$ in anhydrous toluene (40 cm^{3}) was added tributyltin deuteride ($1.0 \mathrm{~g}, 3.42 \mathrm{mmol}$) and azoisobutyronitrile ($0.040 \mathrm{~g}, 0.24 \mathrm{mmol}$) and the resulting solution heated at $80^{\circ} \mathrm{C}$ for five hours under an atmosphere of nitrogen. Extraction using ethyl acetate and purification by flash chromatography (hexane then 5% methanol-chloroform) followed by PLC (70% ethyl acetate-hexane then $5 \% \mathrm{MeOH}-$ CHCl_{3}) furnished cis-($1 S, 2 R$)-1,2-dihydroxy-3-deuteriocyclo-hexa-3,5-diene 15 B as a yellow oil ($0.080 \mathrm{~g}, 25 \%$) (Found: M^{+}, 113.0589; $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ requires 113.0587); $[a]_{\mathrm{D}}-9.3$ (c 2.3, MeOH); $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 2.24(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 4.66(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H})$, 5.96 (3H, m, 4-H, 5-H, 6-H).
cis-($1 S, 2 R$)-1,2-Dihydroxy-3-vinylcyclohexa-3,5-diene 8B. To a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclohexa-3,5diene 4B $(0.5 \mathrm{~g}, 2.1 \mathrm{mmol})$, palladium(II) acetate $(0.047 \mathrm{~g}, 10$ $\mathrm{mol} \%$) and triphenylphosphine ($0.11 \mathrm{~g}, 20 \mathrm{~mol}^{2}$) in anhydrous THF ($40 \mathrm{~cm}^{3}$) was added vinyltributyltin ($0.73 \mathrm{~g}, 2.3 \mathrm{mmol}$). The mixture was stirred at room temperature for 16 h under an atmosphere of nitrogen. The THF was removed under reduced pressure and the residue was stirred overnight at room temperature with saturated aqueous potassium fluoride $\left(15 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$. The organic layer was separated and the aqueous phase re-extracted with ethyl acetate. The combined extracts were dried (anhydrous magnesium sulfate) and concentrated under reduced pressure to yield the crude product which on purification by flash chromatography (80% ethyl acetatehexane) gave cis-($1 S, 2 R$)-1,2-dihydroxy-3-vinylcyclohexa-3,5diene 8B as a pale yellow solid ($0.076 \mathrm{~g}, 26 \%$); $[\alpha]_{\mathrm{D}}+126(c 0.5$, MeOH). The synthetic sample of diol $\mathbf{8 B}$ was found to be spectroscopically and stereochemically indistinguishable from the cis-dihydrodiol metabolite 8B, isolated from the biotransform-
ation of styrene by P. putida UV4. cis-Dihydrodiols 9B and 17B were synthesised from cis-dihydrodiol 4B using similar conditions.
cis-(1S,2R)-1,2-Dihydroxy-3-ethynylcyclohexa-3,5-diene 9B. Ethynyltributyltin ($0.4 \mathrm{~cm}^{3}, 1.39 \mathrm{mmol}$) was added to a stirred mixture of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclohexa-3,5diene 4 B $(0.3 \mathrm{~g}, 1.25 \mathrm{mmol})$, palladium(II) acetate $(0.028 \mathrm{~g}$, $10 \mathrm{~mol} \%$) and triphenylphosphine ($0.066 \mathrm{~g}, 20 \mathrm{~mol} \%$) in anhydrous tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temperature for 16 h under nitrogen. Purification by PLC (70% ethyl acetate-hexane then $10 \% \mathrm{MeOH}-$ methylene chloride) afforded cis-($1 S, 2 R$)-1,2-dihydroxy-3-ethynylcyclohexa-3,5-diene 9B as an orange solid $(0.060 \mathrm{~g}$, 35%), $\mathrm{mp} 51-52^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $[a]_{\mathrm{D}}+216$ (c 0.4, $\mathrm{MeOH})$. The synthetic product was found to be spectrally and stereochemically indistinguishable from the metabolite 9B obtained from ethynylbenzene 9 A .
cis-(1S,2R)-1,2-Dihydroxy-3-n-butylcyclohexa-3,5-diene 17B. To a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclohexa-3,5-diene 4B ($0.5 \mathrm{~g}, 2.1 \mathrm{mmol}$) in anhydrous THF ($10 \mathrm{~cm}^{3}$), was added palladium(II) acetate ($0.047 \mathrm{~g}, 10 \mathrm{~mol} \%$), triphenylphosphine $(0.11 \mathrm{~g}, 20 \mathrm{~mol} \%)$, and tributyltin methoxide $(0.74$ $\mathrm{g}, 2.3 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 16 h . Purification of the crude product by flash chromatography (60% ethyl acetate-hexane) afforded cis-($1 S, 2 R$)-1,2-dihydroxy-3- n-butylcyclohexa-3,5-diene 17B as a relatively unstable light brown oil ($0.039 \mathrm{~g}, 11 \%$); $[a]_{\mathrm{D}}+77$ (c $0.5, \mathrm{MeOH}$) (Found: $\mathrm{M}^{+} 168.11462 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $168.11502) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.93\left[3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right], 1.30-$ $1.59\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.92(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 2.21\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 4.01\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 5.4,2-\mathrm{H}\right)$, $4.31(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.70\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.2,4-\mathrm{H}\right), 5.77\left(1 \mathrm{H}, \mathrm{dd}, J_{6,1}\right.$ $\left.3.3, J_{6,5} 9.5,6-\mathrm{H}\right), 5.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.
cis-(1S,2S)-1,2-Dihydroxy-3-methylsulfanylcyclohexa-3,5-
diene 14B. Methyl tributyltin sulfide ($1 \mathrm{~cm}^{3}, 2.79 \mathrm{mmol}$) was added to a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclo-hexa-3,5-diene 4B ($0.3 \mathrm{~g}, 1.26 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($0.030 \mathrm{~g}, 3 \mathrm{~mol} \%$) in anhydrous benzene $\left(15 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 2.5 h under nitrogen and the solvent was removed under reduced pressure to yield the crude product. Purification by PLC (70% ethyl acetate-hexane then $10 \% \mathrm{MeOH}$-dichloromethane) gave cis-($1 S, 2 S$)-1,2-dihydroxy-3-methylsulfanyl-cyclohexa-3,5-diene 14B as an off-white solid ($0.110 \mathrm{~g}, 55 \%$), $\mathrm{mp} 57-61{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+} 158.038$ 88. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{SO}_{2}$ requires $158.04015)[a]_{\mathrm{D}}+36(c 0.6, \mathrm{MeOH})$, which was found to be spectrally and stereochemically indistinguishable from the cis-dihydrodiol 14B isolated earlier from the biotransformation of methyl phenyl sulfide by P. putida UV4. cis-Dihydrodiols 11B, 16B, 18B-22B, were synthesised in a similar manner to cis-diol 14B using compound 4B and the appropriate tributyltin reagent.
cis-(1S,2R)-1,2-Dihydroxy-3-cyanocyclohexa-3,5-diene 11B. To a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclohexa-3,5-diene 4B ($0.5 \mathrm{~g}, 2.1 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($0.36 \mathrm{~g}, 0.32 \mathrm{mmol}$) in anhydrous THF (40 cm^{3}) was added tributyltin cyanide ($0.73 \mathrm{~g}, 2.3 \mathrm{mmol}$). The mixture was stirred at $50^{\circ} \mathrm{C}$ under an atmosphere of nitrogen (4 h). Purification by flash chromatography (ethyl acetate) gave cis($1 S, 2 R$)-1,2-dihydroxy-3-cyanocyclohexa-3,5-diene 11B as a white solid $(0.15 \mathrm{~g}, 52 \%) ;[a]_{\mathrm{D}}+188^{\circ} \mathrm{C}(c 0.7, \mathrm{MeOH})$ which was found to be spectrally and stereochemically indistinguishable from the cis-dihydrodiol 11B isolated earlier from the biotransformation of benzonitrile by P. putida UV4.
cis-(1S,2R)-1,2-Dihydroxy-3-allylcyclohexa-3,5-diene 16B. To a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclohexa-3,5diene 4B ($0.25 \mathrm{~g}, 1.05 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($0.18 \mathrm{~g}, 0.155 \mathrm{mmol}$) in anhydrous THF ($20 \mathrm{~cm}^{3}$) was added allyltributyltin $(0.37 \mathrm{~g}, 1.12 \mathrm{mmol})$. The mixture was stirred at $35^{\circ} \mathrm{C}$ for 45 min under an atmosphere of nitrogen.

Purification by flash chromatography (75% ethyl acetatehexane) gave cis-($1 S, 2 R$)-1,2-dihydroxy-3-allylcyclohexa-3,5diene 16B as a low-melting unstable solid $(0.049 \mathrm{~g}, 31 \%) ;[a]_{\mathrm{D}}$ $+16(c 0.5, \mathrm{MeOH})$ (Found: $\mathrm{M}^{+} 152.08352 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $152.08372)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$), $3.00\left(2 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $4.05\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6.0,2-\mathrm{H}\right), 5.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.74$ $\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.0,4-\mathrm{H}\right), 5.79-5.98\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 5-\mathrm{H}\right.$, 6-H).
cis-(1S,2S)-1,2-Dihydroxy-3-ethylsulfanylcyclohexa-3,5-diene 18B. To a solution of cis-($1 S, 2 S$)-1,2-dihydroxy-3-iodocyclo-hexa-3,5-diene 4 B $(0.160 \mathrm{~g}, 0.67 \mathrm{mmol})$ and tetrakis(triphenylphosphine) palladium(0) ($0.013 \mathrm{~g}, 1 \mathrm{~mol} \%$) in anhydrous benzene $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen was added ethyl tributyltin sulfide $(0.23 \mathrm{~g}, 0.66 \mathrm{mmol})$ and the solution stirred at $90^{\circ} \mathrm{C}$ for 4 h . Purification by PLC (70% ethyl acetate-hexane then 10% methanol-chloroform) furnished cis-(1S,2S)-1,2-dihydroxy-3-ethylsulfanylcyclohexa-3,5-diene 18B as a yellow solid $(0.070 \mathrm{~g}$, 61%), mp $71-73^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, $55.95 ; \mathrm{H}, 7.1 ; \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ requires C, $55.8 ; \mathrm{H}, 7.0 \%$); $[a]_{\mathrm{D}}+60$ (c 1.0, CHCl_{3}); $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.34\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.46$ $\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 2} 8.6, \mathrm{OH}\right), 2.78\left(2 \mathrm{H}, \mathrm{q}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.17(1 \mathrm{H}$, dd, $\left.J_{2,1} 6, J_{2, \mathrm{OH}} 8,2-\mathrm{H}\right), 4.32(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.66\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.7\right.$, $4-\mathrm{H}), 5.81\left(1 \mathrm{H}, \mathrm{dd}, J_{6,5} 9.6, J_{6,1} 4.0,6-\mathrm{H}\right), 6.00\left(1 \mathrm{H}, \mathrm{dd}, J_{5,4} 5.8\right.$, $\left.J_{5,6} 9.6,5-H\right)$. Electronic CD data $310.80 \mathrm{~nm} \Delta \varepsilon 1.377,209.30$ $\mathrm{nm} \Delta \varepsilon-7.797$. A similar procedure was used for the synthesis of the cis-dihydrodiols 19B-22B.
cis-(1S,2S)-1,2-Dihydroxy-3-isopropylsulfanylcyclohexa-3,5diene 19B. $(0.060 \mathrm{~g}, 31 \%)$, $\mathrm{Mp} 116-118{ }^{\circ} \mathrm{C}$ (from CHCl_{3} hexane) (Found: M^{+}, 186.0711. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires 186.0715); $[a]_{\mathrm{D}}+50\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.33\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{CH}} 3.0\right.$, $\left.\mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{CH}} 3.0, \mathrm{CH}_{3}\right), 2.21\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 2} 8.5, \mathrm{OH}\right)$, $2.45\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 1} 7.8, \mathrm{OH}\right), 3.29\left[1 \mathrm{H}\right.$, septet, $\left.J 6.7, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right]$, $4.15\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 7.0,2-\mathrm{H}\right), 4.34(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.85(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$, $6-\mathrm{H}), 6.01$ ($1 \mathrm{H}, \mathrm{dd}, J_{5,4} 5.5, J_{5,6} 9.6,5-\mathrm{H}$). Electronic CD data $321.20 \mathrm{~nm} \Delta \varepsilon 8.814 \times 10^{-1}, 285.50 \mathrm{~nm} \Delta \varepsilon 1.791,209.00 \mathrm{~nm} \Delta \varepsilon$ -7.535 .
cis-(1S,2S)-1,2-Dihydroxy-3-tert-butylsulfanylcyclohexa-3,5diene 20B. $(0.190 \mathrm{~g}, 75 \%), \mathrm{Mp} 91-93^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{M}^{+}, 200.0881 ; \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires 200.0871); $[a]_{\mathrm{D}}+160(c 1.3$, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.38\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.44\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 1}\right.$ $5.8, \mathrm{OH}), 2.88\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 2} 4.2, \mathrm{OH}\right), 4.20\left(1 \mathrm{H}, \mathrm{dd}, J_{2, \mathrm{OH}} 4.2, J_{2,1}\right.$ $5.4,2-\mathrm{H}), 4.37\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 5.9, J_{1,6} 3.4,1-\mathrm{H}\right), 6.10(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$, $6-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$. Electronic CD data $330.90 \mathrm{~nm} \Delta \varepsilon$ $1.145,271.60 \mathrm{~nm} \Delta \varepsilon 7.514$.

cis-($\mathbf{1 S , 2 S}$)-1,2-Dihydroxy-3-phenylsulfanylcyclohexa-3,5-

diene 21B. $(0.060 \mathrm{~g}, 43 \%), \mathrm{Mp} 48-52^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{M}^{+}, 220.0553 ; \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}$ requires 220.0558); $[a]_{\mathrm{D}}+20(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 2.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.37(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH})$, $4.19\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 5.9,2-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.79\left(1 \mathrm{H}, \mathrm{d}, J_{4,5}\right.$ $5.5,4-\mathrm{H}), 5.88\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6,5} 9.5, J_{6,1} 3.3, J_{6,4} 0.9,6-\mathrm{H}\right), 5.94(1 \mathrm{H}$, ddd, $\left.J_{5,4} 5.5, J_{5,6} 9.5, J_{5,1} 1.3,5-\mathrm{H}\right), 7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.48$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Electronic CD data $307.20 \mathrm{~nm} \Delta \varepsilon-6.29 \times 10$, $266.60 \mathrm{~nm} \Delta \varepsilon 1.293 \times 10,200.70 \mathrm{~nm} \Delta \varepsilon-2.530 \times 10$.
cis-(1S,2S)-1,2-Dihydroxy-3-p-tolylsulfanylcyclohexa-3,5-
diene 22B. $(0.220 \mathrm{~g}, 75 \%), \mathrm{Mp} 46-48{ }^{\circ} \mathrm{C}$ (from hexane) (Found: M^{+}, 234.0717. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires 234.0715); $[a]_{\mathrm{D}}-16(c$ 1.8, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.08\left(1 \mathrm{H}, \mathrm{d}, J_{2,1} 6,2-\mathrm{H}\right), 4.27(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $5.58\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 5.6,4-\mathrm{H}\right), 5.74\left(1 \mathrm{H}, \mathrm{dd}, J_{6,5} 9.4, J_{6,1} 3.4,6-\mathrm{H}\right)$, $5.81\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,4} 5.6, J_{5,6} 9.4, J_{5,1} 1.3,5-\mathrm{H}\right), 7.10(2 \mathrm{H}, \mathrm{d}, J 8.1$, $\mathrm{ArH}), 7.29(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH})$. Electronic CD data 307.40 nm $\Delta \varepsilon-3.585,268.10 \mathrm{~nm} \Delta \varepsilon 8.632,201.00 \mathrm{~nm} \Delta \varepsilon-1.384 \times 10$.

References

1 D. T. Gibson and V. Subramanian, Microbial Degradation of Organic Compounds, ed., D. T. Gibson, Marcel Dekker, New York, 1984, pp. 181-252.
2 S. C. Taylor, in Enzymes in Organic Synthesis, CIBA Foundation Symposium 111, Pitman, London, 1985.

3 D. A. Widdowson, D. W. Ribbons, S. D. Thomas, Janssen Chim. Acta, 1990, 8, 3.
4 H. A. Carless, Tetrahedron: Asymmetry, 1992, 3, 795.
5 G. N. Sheldrake, in Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds, eds., A. N. Collins, G. N. Sheldrake, J. Crosby, J. Wiley and Sons, Chichester, 1992, Ch. 6.
6 S. M. Brown and T. Hudlicky, in Organic Synthesis: Theory and Applications, JAI Press Inc., Greenwich, CT, 1993, 2, 113.
7 T. Hudlicky and A. J. Thorpe, Chem. Commun., 1996, 1993.
8 D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep., 1998, 15, 309.
9 D. R. Boyd, M. R. J. Dorrity, M. V. Hand, J. F. Malone, N. D. Sharma, H. Dalton, D. T. Gray and G. N. Sheldrake, J. Am. Chem. Soc., 1991, 113, 666.
10 D. R. Boyd, M. V. Hand, N. D. Sharma, J. Chima, H. Dalton and G. N. Sheldrake, J. Chem. Soc., Chem. Commun., 1991, 1630.

11 D. R. Boyd, J. Blacker, B. Byrne, H. Dalton, M. V. Hand, S. C. Kelly, R. A. More O'Ferrall, S. N. Rao, N. D. Sharma and G. N. Sheldrake, J. Chem. Soc., Chem. Commun., 1994, 313.
12 D. R. Boyd, N. D. Sharma, M. V. Hand, M. R. Groocock, N. A. Kerley, H. Dalton, J. Chima and G. N. Sheldrake, J. Chem. Soc., Chem. Commun., 1993, 974.
13 S. M. Resnick, D. S. Torok and D. T. Gibson, J. Org. Chem., 1995, 60, 3546.
14 D. R. Boyd, N. D. Sharma, S. A. Barr, H. Dalton, J. Chima, G. Whited and R. Seemayer, J. Am. Chem. Soc., 1994, 116, 1147.

15 C. C. R. Allen, D. R. Boyd, H. Dalton, N. D. Sharma, I. Brannigan, N. A. Kerley, G. N. Sheldrake and S. C. Taylor, J. Chem. Soc., Chem. Соттип., 1995, 117.
16 D. R. Boyd, N. D. Sharma, R. Agarwal, S. M. Resnick, M. J. Schocken, D. T. Gibson, J. M. Sayer, H. Yagi and D. M. Jerina, J. Chem. Soc., Perkin Trans. 1, 1997, 1715.

17 H. Ziffer, K. Kabuto, D. T. Gibson, V. M. Kobal and D. M. Jerina, Tetrahedron, 1977, 33, 2491.

18 J. K. Stille, Angew. Chem., Int. Ed. Engl., 1985, 57, 1771
19 M. Pereyne, J. P. Quintard and A. Rahm, in Tin in Organic Synthesis, Butterworths, London, 1987.
20 C. C. R. Allen, D. R. Boyd, H. Dalton, N. D. Sharma, S. A. Haughey, R. A. S. McMordie, B. T. McMurray, G. N. Sheldrake and K. Sproule, J. Chem. Soc., Chem. Commun., 1995, 119.
21 G. R. Stephenson, P. W. Howard and S. C. Taylor, J. Chem. Soc., Chem. Commun., 1991, 127.
22 D. R. Boyd, M. R. J. Dorrity, J. F. Malone, R. A. S. McMordie, N. D. Sharma, H. Dalton and P. Williams, J. Chem. Soc., Perkin Trans. 1, 1990, 489.
23 D. R. Boyd, N. D. Sharma, M. R. J. Dorrity, M. V. Hand, R. A. S. McMordie, J. F. Malone, H. P. Porter, H. Dalton, J. Chima and G. N. Sheldrake, J. Chem. Soc., Perkin Trans. 1, 1993, 1065.

24 T. Hudlicky, H. Luna, G. Barbieri and L. D. Kwart, J. Am. Chem. Soc., 1998, 110, 4735.
25 D. T. Gibson, M. Hensley, H. Yoshioka and T. J. Mabry, Biochemistry, 1980, 9, 1626.
26 D. T. Gibson, B. Gschwent, W. K. Yeh and V. M. Kobal, Biochemistry, 1973, 12, 1520.
27 T. Hudlicky, G. Seoane and T. Pettus, J. Org. Chem., 1989, 54, 4239.
28 S. C. Taylor and M. D. Turnbull, European Patent Application EPO253485 A2/1988.
29 G. M. Sheldrick, SHELXS-86, Acta Crystallogr., Sect. A, 1990, 46, 467.

30 G. M. Sheldrick, SHELXL-93, Program for crystal structure refinement, University of Göttingen, 1993.

Paper 8/00809D
Received 29th January 1998
Accepted 7th April 1998

[^0]: \& Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, available via the RSC Web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/213.

